배포본/공개

의안번호	제 1 호
제 출 연 월 일	2025. 3. 12.

심 의 사 항

R&D를 넘어 산업화로 퀀텀 이니셔티브 추진 전략(안)

양자전략위원회

제 출 자	관계부처 합동
제출연월일	2025. 3. 12.

1. 의결 주문

○ 「퀀텀 이니셔티브 추진 전략(안)」을 별지와 같이 의결함

2. 제안 이유

○ 미래 산업·안보 게임체인저로서 글로벌 패권 경쟁 및 기술 블록화가 본격화되고 있는 양자과학기술 분야의 전략적·체계적 육성방안을 담은 「퀀텀 이니셔티브 추진전략」을 수립·시행하고자 함

3. 주요 내용

1 추진 배경

- □ 양자기술은 국가의 미래 경제·사회·안보에 지대한 영향^{*}을 미치는 게임 체인저
 - * 암호체계 무약화(양자컴퓨팅), 정보탈취 원천 차단(양자통신), 스텔스 잠수함 탐자(양자센서) 등 국가 안보 좌우, 금융, 화학, 물류·모빌리티, 의약 등 '35년까지 최대 2조 달러(약 2,781조원) 잠재가치 평가 등
 - 미·중 兩强 경쟁이 빠르게 심화*되는 가운데, EU·일본·영국 등 주요국도 국가 차원의 집중 투자 및 수출통제 강화 등 패권 경쟁
 - * (美) IBM·lonQ 등 세계 최고 수준 양자컴퓨팅 기업 다수 보유, 전 세계 투자액(추정)의 42% 점유 VS (中) 세계 최초 양자위성통신 시연 성공('17.6), '24년 누적특허수 1위 기업(오리진퀸텀) 보유 등
- □ 우리나라는 '14년부터 본격 지원, 정책 수립·법 제정 등 양자 주도권 확보 총력 중이며 꾸준한 투자 확대*를 통해 분야별 우수 성과 창출 등 결실
 - * '15년 45억원(사업 1개) → '25년 1,980억원(사업 26개)
 - 그럼에도 불구하고 **대표적 양자기업 부재 및 산업화 미흡, 핵심 인력 부족**(Pl급 595명) 등 해결해야 할 과제도 여전
 - ⇒ 2025년 양자의 해를 기해 글로벌 양자생태계에 본격 진입할 수 있도록 현 상황을 재점검하고, 앞으로의 추진 전략을 제시

2 국내외 주요 동향

□ 전체 시장 규모 및 투자 동향

- **(양자시장 규모)** 現 시장규모는 약 23.4억 달러(약 3.3조원) 수준이나, '33년까지 약 246억 달러(약 34조원)으로 10배 가까이 성장할 전망
- (투자 동향) 양자 기업은 전 세계적으로 계속 증가하는 추세*이며, 기업투자의 대부분은 민간 투자자금 형태로 미국 기업에 집중
 * ('01) 1개 → ('11) 25개 → ('21) 330개 →'23년 366개

□ 분야별 기술·산업 동향

- (양자컴퓨팅) 개발 초기 단계로 HW부문 개발·투자 집중, 큐비트 구현에 있어 다양한 플랫폼(초전도·이온트랩·광자·중성원자 등) 간 경쟁 중
- (양자통신) EU QCI 프로젝트 등 양자암호통신 중심 시장 성장에 따라 QKD, QENC, QKMS 중심으로 SW·HW·소부장 투자 및 관련 제도 정비 中
- (양자센서) 간섭현상 등을 활용한 양자센서 초기 상용화를 추진 중, 얽힘·압착 중심으로 고전 센서 이론한계를 극복한 양자센서는 원천 연구 중

□ 분야별 기술·산업 동향

- (정책/투자) 산업· 안보적 관점에서 양자과학기술과 산업 선점을 위해 美·英·加·日 등 각국은 경쟁적으로 국가양자전략과 투자 계획 발표* * 美 NQI Act 통해 '19~'23년 동안 39억달러 투자 계획 발표, 英 국가양자전략('23.3) 통 해 '24~'33년동안 25억파운드 투자 계획 등
- (협력 강화) 미국은 글로벌 협력의 중요성을 점차 강조*하면서 핵심 파트너(Key Partner) 개념을 제시, 자국의 이익 기반 협력 추구 * '23.11월 NQI Act 개정안에 국제협력 섹션 추가, '24.8월 국제협력 전략 문서 발간 등
- (기술보호·통제) 각국 정부 간 글로벌 협력 수요는 증가하고 있으나, 핵심동맹국 내 교류로 제한되는 추세이며, 양자 분야 기술통제* 가속화
 - * (美) 상무부, 양자컴퓨터 관련 소재·부품·장비 수출통제 발표('24.9) (英) 34큐비트 이상 양자컴퓨터 등 주요 신흥기술수출 규제 확대('24.4)

3 주요 내용

I. 전략적 R&D와 인재 양성을 통한 핵심역량 확보

- ① (미래선도 R&D) 지배적 기술이 없는 양자 분야에서 파괴적 혁신을 통한 패권기술 확보를 위해 실패 허용 혁신도전형 R&D 추진
 - * 선도국 추격형 R&D에서 탈피하여 차세대 양자컴 플랫폼, 미래우주통신 대비 위성 양자 인터넷 등 미개척 분야 선점 기회를 발굴하는 경쟁형 R&D사업 기획 추진
- ② (플래그십 프로젝트) 양자기술 최초의 대형 R&D사업인 플래그십 프로젝트 를 성공적으로 착수하여 양자기술 대도약과 양자산업 기반 마련
 - * (양자과학기술 플래그십 프로젝트) '25년 252억원 8년간 총 7,292억원 투자 * 시업적정성 검토 중
 - 1000큐비트 양자컴, 양자중계기 기반 양자네트워크, 無GPS 양자 항법센서 등을 민간기업과 함께 개발하여 산업 활용까지 연계
- ③ (인재양성) 양자대학원 중심 핵심 인력 양성 및 산·학·연 인적자원을 결집할 개방형 연구거점인 퀀텀플랫폼 구축으로 인력 선순환 생태계 구축
 - * (양자대학원) 고려대, KAIST, 포스텍을 통해 '32년까지 박사급 전문인력 540명 배출
 - * (퀀텀플랫폼 구축사업) '25년 신규 68억원, 2개 거점 지정
 - 국내 기업이 부족한 상황에서 양자대학원 등을 통해 배출되는 **양자인력의 저수지 역할**을 수행하며, **산업계 협력과 전환인력 유입** 촉진

II. 기초·원천연구를 넘어 양자 산업화 기반 마련

- ④ (양자이득 조기실현) 양자컴 제작 뿐만 아니라 상용화 시대에 대비한 활용 역량 확보를 위해 알고리즘・SW 지원 강화로 USE-CASE 조기 창출
 - 글로벌 양자컴퓨터 도입·운영으로 **양자컴 시스템 운용 역량 내재화 및** 산업분야 난제 해결을 위한 **양자이득 도전사업 확대**
 - * (양자컴퓨팅 서비스 및 활용체계 구축사업 : '25년 신규 58억원) (양자이득도전사업 : '24년 65억원 → '25년 96억원, 신규과제 12개 추가)
 - 양자컴퓨터 활용에 대한 사회 전반의 관심을 높이고 혁신적 아이디어 도출을 위한 경쟁형 R&D 방식의 '퀀텀 알고리즘 챌린지'신설 추진

- ⑤ (소부장산업 육성) 광소재, 웨이퍼, 계측 통신장비 등의 기업에서 양자분야에 필요한 소재(케이블 등), 소자, 모듈 사업화를 위한 연구개발 확대
 - * 퀀텀ICT엔지니어링기술개발 사업: '25 ~ '29 / 총사업비 493억원 ('26확대)
 - 공공·국방·첨단 산업 등 분야 대상으로 양자통신 및 양자 센서 기술 적용 수요 발굴, 실증을 통한 활용시례 창출(예: 양자라이다 기술 자동차 적용)
 - ※ 양자산업 수요연계형 실증사업('25년 신규 50억원)
- ⑥ (스타트업 성장 지원) 양자 스타트업의 성장 마중물 제공을 위한 양자 전용 펀드 조성^{*} 및 창업기업 전주기 성장 지원
 - * 과학기술 R&D 혁신펀드('24.9~'28.12) 내 양자 분야 투자 추진
- ⑦ (퀀텀파운드리) 초전도 QPU 등 핵심소자 제작의 기반이 될 퀀텀파운드리 확대 구축으로 국내 뿐만 아니라 글로벌 제작 수요 대응
 - * 성균관대 양자팹=한국나노기술원을 연계한 글로벌 양자 파운드리 육성
 - 컴퓨팅, 통신·센서 분야별 특성을 고려한 **맞춤형 양자 테스트 베드** 구축 및 클러스터 연계 산업화 촉진
 - * (통신·센서) 4개 거점 연결 양자통신·센서 개발자원/(컴퓨팅) 플래그십 연계 소부장 테스트베드 구축

Ⅲ. 글로벌 협력과 기술 안보 확보

- ⑧ (글로벌거점) 세계최고 수준 양자기술 연구 거점으로 글로벌 공동 연구 기반이 될 '(가칭)퀀텀 프론티어랩' 구축 추진
 - * 시카고대, Duke대 등 양자기술 연구 선도대학과 협업으로 연구소 설립 및 국내 연구진 파견
- ⑨ (국제협력주도) 기술안보 확보를 위해 미국 등 주요 선도국이 참여하는 퀀텀개발그룹(QDG) 회의 한국 유치 추진으로 국제협력 주도 국가 부상
 - * 미 국무부 주관 9개국 고위급 협의체('24년 출범, '25년 3월 호주에서 3차 회의 개최 예정)
- ⑩ (민군협력R&D) 국방부·방사청과 협업을 통해 무기체계 적용가능한 양자기술 개발, 국방 R&D와 연계를 통한 미래 전장 대비태세 구축
 - * 잠함탕이 가장선 유민복제용양암호통간술등 무체계적용적 단체교 4~6) 기술받친

공 개

R&D를 넘어 산업화로 퀀텀 이니셔티브 추진 전략

2025. 3. 12.

순 서

I . 수립 배경····································
Ⅱ. 양자과학기술 및 산업 현황2
Ⅲ. 해외 정책 동향 4
Ⅳ. 그간의 노력과 진단6
∨. 퀀텀 이니셔티브 추진 전략
1. 비전 및 전략8
2. 10대 핵심과제 추진 방안9
Ⅵ. 과제별 추진 일정17

Ⅰ. 수립 배경

◈ 양자과학기술은 미래 국가 기술 패권을 좌우할 핵심 전략기술

- □ 양자기술은 국가의 미래 경제·사회·안보에 지대한 영향^{*}을 미치는 게임 체인저
 - * 임호체계 무리하(양지품), 정보들취 원천 치단(양지통신), 스텔스 감수함 탐지(양지센서) 등 국가 안보 좌우, 금융, 화학, 물류·모빌리티, 의약 등 '35년까지 최대 2조 달러(약 2,781조원) 잠재가치 평가 등
 - 미·중 兩强 경쟁이 빠르게 심화*되는 가운데, EU·일본·영국 등 주요국도 국가 차원의 집중 투자 및 수출통제 강화 등 패권 경쟁
 - * (美) IBM·lonQ 등 세계 최고 수준 양자컴퓨팅 기업 다수 보유, 전 세계 투자액(추정)의 42% 점유 VS (中) 세계 최초 양자위성통신 시연 성공('17), '24년 누적특허수 1위 기업(오리진퀸텀) 보유 등

주요국	주요 정책 및 투자	기술 통제
	·('23.11) '국가'앙자이나(투리보재승인법, 발의 ·5년간 39억 달러(약 5.5조원) 투자 진행	·('24.9) 양자컴퓨터 소·부·장 수출통제 품목에 포함
	·('23.3) 「국가양자전략」 발표 ·10년간 25억 파운드(약 4조원) 투자 계획	·('24.4) 34큐비트 이상 양자컴퓨터 수출 규제
	·(18) 영차폴대그십 , (21) 「호라이즌유럽 ·3년간 13억 유로(약 1.9조원) 투자 진행	·('23.10) 양자컴퓨터 등 4대 핵심기술 수출 통제 검토

◈ 양자 법·제도 마련과 첨단 인프리를 바탕으로 기술 주도권 확보 기능

□ 우리나라는 '14년^{*}부터 본격 지원, **정책 수립·법 제정 등** 양자 주도권 확보 총력 * 양자정보통신 중장기 추진전략('14.12.5)

2021	2022	2023	2024
・양 <u>자기술</u> R&D	· 12대 국가전략기술 지정	대한민국 양자과학기술 전략	• 퀀텀 이니셔티브
투자전략	ㆍ 양자기술 전략로드맵	• 양자기술산업법 제정	• 양자기술산업법 시행

- 후발주자(기술수준 65%)로서 불리한 상황에서도 꾸준히 투자 확대*, 분야별 우수 성과 창출(세계 최고수준양자중력센서, 세계 3번째 양자암호통신 등) 등 결실
 * '15년 45억원(사업 1개) → '25년 1,980억원(사업 26개)
- 그럼에도 불구하고 **대표적 양자기업 부재 및 산업화 미흡, 핵심 인력 부족**(Pl급 595명) 등 해결해야 할 과제도 여전
- ⇒ 2025년 양자의 해를 기해 글로벌 양자생태계에 본격 진입할 수 있 도록 현 상황을 재점검하고, 앞으로의 전략적 이행방안을 제시

Ⅱ. 양자과학기술 및 산업 현황

◈ 글로벌 양자시장은 가파르게 상승할 것으로 예측(CAGR 30%), 민간 중심의 투자가 자속되면서 시장 선점을 위한 글로벌 기업과 스타트업 간 기술경쟁이 심화

□ 전체 시장 규모 및 투자 동향

- **(양자시장 규모)** 現 시장규모는 약 23.4억 달러(약 3.3조원) 수준이나, '33년까지 약 246억 달러(약 34조원)으로 10배 가까이 성장할 전망
 - * 한편 **맥킨지 보고서**('24년)는 '35년까지 전체 시장규모 최대 897억 달러 (125조원), 양자컴퓨팅 시장 720억 달러(100조원), 금융·화학·모빌리티· 생명과학 등 파생산업 규모는 2조 달러(2,806조원) 전망
 - < 양자과학기술 전체 시장 규모 전망 >

< 양자과학기술 분이별 시장 규모 전망 >

* Precedence Research ('24)

- (투자 동향) 양자 기업은 전 세계적으로 계속 증가하는 추세*이며, 기업투자의 대부분은 민간 투자자금 형태로 미국 기업에 집중 * ('01) 1개 → ('11) 25개 → ('21) 330개 →'23년 366개

< 글로벌 양자시장 투자 비중 ('23년)> < 글로벌 양자시장 투자액 ('01년~'23년) >

* McKinsey, Quantum Technology Monitor ('24)

□ 분야별 기술·산업 동향

- (양자컴퓨팅) 개발 초기 단계로 HW부문 개발·투자 집중, 큐비트 구현에 있어 다양한 플랫폼(초전도·이온트랩·광자·중성원자 등) 간 경쟁 중
- → '30년 후반 오류내성 양자컴퓨터(FTQC)에 의한 본격 상용화에 앞서 오류를 포함한 중간규모 양자컴퓨터(NISQ)를 문제해결에 일부 적용 예상

오류 내성 양자컴퓨터 (Fault-Tolerant Quantum Computing, FTQC)	오류 포함 중간규모 양자컴퓨팅 (Noisy Intermediate-Scale Quantum, NISQ)
에서 많은 오류가 발생하는데, 오류정정을 통해 일정수준	

- (**양자통신**) EU QCI 프로젝트 등 양자암호통신 중심 시장 성장에 따라 QKD, QENC, QKMS 중심으로 SW·HW·소부장 투자 및 관련 제도 정비 中
- → 단기에는 **양자암호통신 중심으로 초기 상용화** 이루어질 전망이며, 장기적으로 양자기기간 연결(양자인터넷) 기반 양자ICT 산업 창출 전망
- (양자센서) 간섭현상 등을 활용한 양자센서 초기 상용화를 추진 중, 얽힘·압착 중심으로 고전 센서 이론한계를 극복한 양자센서는 원천 연구 중
- → 자기장·중력 센서는 GPS·의료 등 일부 분야에서 상업적으로 이용 중이며 기술 발전에 따라 양자기술 전반의 성능향상을 위한 요소기술화

ᆸᅆᆑᇄᄑᄀᆝᅅᅠᄃᇶ			
 양자컴퓨팅	분야별 대표 기업 동향 양자 통신	양자 센싱	
● (현황) 오류정정에서 획기적 성과를 거둔 초전도 QPU '월로우'(willow) 발표('24.12), 노이즈 문제 해결을 위해 엔비디아와 협력 가속화 발표 등('24.11) ■ (계획) 5년 내 상용 양자컴퓨팅 앱 출시 목표, 실제 문제 적용가능 계산 구현	 【DQ ■ (현황) IID 트랙에서 QRNG칩 NIST ESV 인증('23.9) ■ (계획) 캐나다 양자암호기업 BTQ와 차세대 인증 시스템 개발을 위한 MOU 체결('24.7) 	● (현황) 양자 센서를 활용해 지구 지각 자기장 데이터를 수집하여 GPS 재밍에 대응할 수 있는 새로운 인공지능(AI) 기반 항법시스템을 발표('24.6) ■ (계획) 배터리 회사 노보닉스와 리튬 이온 배터리 수명 연장 연구, 양자센서를 이용한 AI 자기 심전도 시스템 개발중('24.10)	
 ● (현황) 1,121큐비트 콘도르(Condor) 프로세서 개발('23.12) 및 기존제품보다 50배 빠른 '퀀텀 헤론' R2 공개('24.11) 등 ● (계획) '25년 4,000큐비트 양자컴퓨터 개발 출시 목표 	 ♣ 따르고 ■ (현황) 양자암호기술이 탑재된 Huawei 스마트폰 메이트60 프로 출시('23.8) ■ (계획) QuantumCTek주도 QKD용 장치 및 모듈 등 양자통신 업계 시리즈 표준 지속 발표('24.10) 	 ✔ Infleqtion ■ (현황) 美 NASA와 공동연구를 통해 레이저 냉각 기술을 이용한 첫 양자메모리 개발 성공('24.8) ■ (계획) 기존 시간표준 보다 향상된 광학 원자 시계 플랫폼 Tiker를 통해 차세대 데이터 센터와 통신 네트워크에 최적화 목표 발표('24.2) 	

Ⅲ. 해외 정책 동향

- ◇ 장기 상용화 시점("30년 이후)에도 불구, 세계 주요국들은 양자과학기술을 전략기술로 분류하여 집중적 투자, 수출통제 강화 등 패권 경쟁 본격화
 - ※ 특히 미국은 중국의 양자컴퓨팅 기술에 대해 △동맹국과 함께 기술 블록화하여 핵심기술 확보를 제한하고 △양자내성암호 개발·적용 등 대응체계 구축
- **(정책/투자)** 산업· 안보적 관점에서 **양자과학기술**과 **산업 선점**을 위해 美·英·加·日 등 각국은 경쟁적으로 **국가양자전략**과 **투자 계획** 발표

중장기 전략에 근거한 범정부적 지원 적극적인 수출 통제 추진

- (국가 양자 이니셔티브^{NQI}, '18.12) NSF, NIST, DOE, DOD 등 관계부처를 포괄하는 종합자원 체계를 구축하고 '19~'23년 동안 39억달러(약 5.5조원) 투자
- (국방수권법^{NDAA}, '19.~'20.) 국방부가 양자 정보고학 및 기술 연구개발을 수행하고 지원하도록 법률화하였 으며, 양자정보고학연구 센터 설립을 승인함
- (국가 양자 이니셔티브^{NQI} 재승인법 발의, '23.11) 신업계 자원 인력 청 국제협력 응위 발자원 확 를 골 로 법 개정과 자승인 추진 '25-'29년 동안 약 18억 달러 추진

양자 혁신과 리더쉽 확보를 위하여 양자기술 연구 및 양자 생태계 강화

- (국가양자 전략^{NQS}, '23.1) 양지점퓨터 HW/SW, 양지통신 양지산에를 중심으로 3대 핵심 요소(연구, 안재 상용화)에 따른 프로그램을 수립하여 확고한 양지분 야 글로벌 리더쉽 및 양자기술 우위 확보
 - * 국가 양자 전략을 기반으로 7년간 약 3.6억 캐나다 달러(약 0.4조원)의 예산을 배정하였으며, 양자분야 연구에 1.41억달러, 인력 양성에 0.45억 달러, 산업화에 1.69억 달러 투자 예정임

양자경제국가 선도를 위한 강력한 양자 기반 구축 및 전략적 투자 추진

- (국가 양자 전략, '23.3) '24~'33년 동안 25억 파운드(약 4조원)을 투자하여, 디지털 인프라 및 첨단 제조 기반 세계 최고 양자 경제 국가 도약 추진
 - * ('23.12) 5대 핵심 미션 수립(자국의 양자컴퓨터 1조 사례 활용, 양자 인터넷 구축, 의료용 양자센서, 양자 네비게 이션 시스템, 양자 모빌리티 센서)
- (국가 양자컴퓨팅 센터 개소, '24.10) 1.43억 파운드 이상을 투자하여, 양자 컴퓨터 개발 및 연구, 응용분야 발굴, 인력 양성 목적으로 개소

● 양자 육성 전략에 기반하여 미국처럼 주요 센터를 지정하고 대규모 투자추진

- **(양자 이노베이션 전략**, '20.1) 양자 기술을 중점 육성하기 위한 중 장기 국가 전략 수립
- (양자 미래 시회 비전, '22.4) 사회 전체를 양자 과학기술로 전환하는 "퀀텀트렌스포메이션(QX)" 실현하기 위한 3대 목표 제시
- * '30년 양자기술 이용자 1,000만 명, 양자기술 관련 생산액 50조엔, 양자 유니콘 벤처 기업 창출 목표
- (G-QuAT* 슈퍼컴퓨팅 센터 개소, 23.7) 210억엔 이상 투자하여 반도체 초전도, 냉각원자 방식의 3대의 양사캠드롭기동하여 양자심 글라드 팔曙 개발 목표
- * 산업기술종합연구소의 양자·AI 융합기술 비즈니스 개발 글로벌 연구센터
- (양자산업 창출 및 발전을 위한 추진 방안, '24.4) 양자기술의 세계 경쟁력 확보와 신산업 창출 및 발전를 위한 추진 방안 수립

- 대규모 투자로 빠르게 미국을 추격중, 허페이 양자에비뉴 등 산업 육성 추진
- (14차 5개년 국가과학기술혁신계획, 20.11) 양정보 기술을 국가 중대 과제로 승격되고 국가 중대 과학기술 프로젝트 기동을 통해 양통신 및 양컴퓨팅 등 프론 티어 분야 집중 육성
 - *양자정보 등 7대 첨단기술 분야 선정, 선택과 집중 전략
- (국가 지연과학가금 조례 개정, '24.10) 양자과학 기술 등에 대한 기초연구 지원 확대 및 청년 인재 양성, 사회적 자본 참여 활성화를 통한 과학기술 자립 체계 강화
 - *'24년 과학기술 예산 전년 대비 10% 증가, 특히 기초과학 연구 투자 대폭 확대

뛰어난 기초기술에도 IT 후발주자임을 반성, 양자시대 산업선도 천명

- (유럽 양자 플래그십, 18.10) 연구기관, 산업계, 공공 지금 지원기관 등 유럽 양자리학기술 분야 역량을 결잡하여 혁신하브, 연구센터, 스타트업, 인력양성 등에 대한 회원국 공동 재정 지원
 - *'24년 2월 전략적 연구 및 산업 어젠다(SRIA) 선언, 향후 10년 로드맵 및 양자 계획 발표
- (호리) 준 유럽, '21.1) EU 주관, 27개국이 참여하는 7개년('21~'27) 제9차 프레임워크 프로그램으로, 역대 최대 예산(955억 유로) 지원 및 세계 최대 다자간 과학기술 분야 연구혁신 프로그램
 - *'24년 3월 아시아 국가 최초로 대한민국이 준회원국으로 가입 (글로벌 문제해결과 산업 경쟁력 강화 공동연구 부문)
- (협력 강화) 미국은 글로벌 협력의 중요성을 점차 강조*하면서 핵심 파트너(Key Partner) 개념을 제시, 자국의 이익 기반 협력 추구
 - * '23.11월 NQI Act 개정안에 국제협력 섹션 추가, '24.8월 국제협력 전략 문서 발간 등
 - 각국이 보유한 강점·역량 중심으로 글로벌 양자생태계 조성될 전망
 - * (예시) 핀란드 초저온냉동기, 일본 양자컴퓨터 소재・부품, 캐나다 아날로그 양자시뮬레이터 등
- (기술보호·통제) 각국 정부 간 글로벌 협력 수요는 증가하고 있으나, 핵심동맹국 내 교류로 제한되는 추세이며, 양자 분야 기술통제* 가속화
 - * (美) 중국의 양자컴퓨터 분야 투자 금지·제한 행정명령 발표('23.8) 상무부, 양자컴퓨터 관련 소재·부품·장비 수출통제 발표('24.9)
 - (英) 34큐비트 이상 양자컴퓨터 등 주요 신흥기술수출 규제 확대('24.4)

※ 트럼프 2기 행정부 출범에 따른 변화 전망

- 전반적 감세 기조에도 불구, 양자 분야 투자 확대 및 산업 진흥, 이익기반 핵심 동맹국 협력 및 기술 통제 등 기존 양자 분야 정책 방향은 유지 예상
 - * 현재 국가 양자이니셔티브법 재승인 법안(NQI Act)이 상원 계류 중이나, NQI법이 트럼프 1기('18년) 제정되었다는 점에서 큰 틀의 변화는 없을 가능성
- 다만 美·中 무역 갈등이 악화될 경우, 헬륨(He) 및 희토류 등 양자 기술에 필요한 원료 수출통제 강화*로 글로벌 공급망 이슈 발생 가능성
 - * (美 상무부 산업보안국) 첨단기술 수출통제 조치 개정('24.9) VS (中 상무부) 수출통제법 개정('23.8) (中 국무원) 희토류 관리 조례 시행 ('24.10)

Ⅳ. 그간의 노력과 진단

- □ 후발주자로서 상대적으로 늦은 시작에도 불구, **공격적 투자 확대** 및 신속한 법·정책 기반 마련은 긍정적 평가
 - 이에 더해, 우수한 반도체·제조업 기술력과 관련 중소기업 기반으로 글로벌 국가들 역시 협력 파트너로서 한국의 역량을 주목
- □ 다만 美·中 등 선도국을 중심으로 대규모 투자와 특허 경쟁, 초기 시장 형성과 기술·인력 통제가 속도감 있게 이루어지는 상황
- 우리나라가 글로벌 양자 생태계 진입을 위한 골든 타임을 놓치지 않
 도록, 범부처 차원의 신속한 전략 수립과 이행이 필요한 시점
- □ 특히 그간의 노력에도 불구, 핵심 인력 부족과 산업화 미흡 여전
- 통신 분야는 대기업 참여·정부 제도 지원 등 강점과 소부장 해외 의존 등 약점 공존, 센서 분야는 빠른 상용화 시기 전망에도 불구 본격적 산업화 단계 미진입
 - 컴퓨팅 분야는 선도국 대비 기술 격차 및 대표 제조 기업 부재, 엔지니어 인력 부족 등 우리의 반도체·제조 역량을 살리지 못하고 있는 상황
- 생태계를 뒷받침할 **양자 핵심인력 역시 595명***('24.12) 수준으로 **절대적** 부족, 아직까지 반도체·전기전자 등 인접 분야 관심·유입도 미흡
 - * 대학 285명 출연연 247명, 기업 63명, (vs 美 3,122명, 中 5,517명)
- ⇒ 우리를 둘러싼 정책환경을 면밀히 분석, 새로운 퀀텀 추진 전략을 마련할 필요 <우리나라 Quantum 정책 환경>

Strength(강점)	Weakness(약점)
• 통신·센서 분야 세계적 수준 원천·상용 기술	• 작은 국내 시장 규모와 부족한 산업생태계
• 우수한 반도체·제조 역량 과 중소기업 기반	• 소재, 레이저 등 양자 소부장 해외 의존
• ITU-T 등 국제 표준 선도	• 양자정보 핵심인력 부족 및 인접분야 유입 미흡
Opportunity(기회)	Threat(위협)
• 국내 네트워크 기업 참여확대(투자·인력)	• 국제표준(IEC) 대응 위한 외교력 부족
• 세계회초 보인컴증제 미련으로 암호통신 확신기반미련	• 양자기술 및 소부장 수출입 통제 강화
• 소부장, 알고리즘sw, 어플리케이션 등 열린 시장	• 큐비트 경쟁 이어 활용분야 선점 경쟁 시작

-〈 참고 : 현장의 목소리 〉-

◆ 국내 양자과학기술 산·학·연 전문가 설문 조사(11.14~24) 및 현장 간담회(8.29, 11.20, 12.16, 1.22, 2.20) 의견수렴 결과

□ 소부장 기술 전략적 육성 통해 글로벌 생태계 진입 필요

- " 우리가 잘 할 수 있는 소부장, 그 중에서도 글로벌 시장 수요(특히 미국)가 있는 기술에 집중하여 글로벌 양자 공급망 진입할 수 있도록 전략적 육성 필요"
- "양자 全 분야에 공통 활용가능한 **광학장비**, 계측기, RF부품 등 지속적인 개발 지원이 필요하며, 양자팹·가속기 인프라 중심 양자소자 생산 및 공정 개발 필요"

□ 컴퓨팅·통신·센서 분야별 특성을 고려한 R&D, 산업화 전략 필요

- "(컴퓨팅) ① 여러 후보·미래 기술, 플랫폼 탐색 ② 소프트웨어·알고리즘 투자 확대 ③ 양자 이득 모색 및 활용분야 확산 투자 ④ 컴퓨팅·클라우드 접근성 제고 지원 필요"
- "(통신) 국내 양자 통신 기술은 이미 경쟁력 확보, PQC·QKD 등 정부 구입 의무화나 실증 사업 지원을 통해 소부장 육성 및 시장 형성이 필요"
- "(센서) 국방, 항공, 의료 등 분야별 수요와 활용가능성을 고려, 고전 센서 대비 우위를 보일 수 있는 기술을 명확히 식별하여 투자 집중할 필요"

□ 타분야 유입, 양자 전환, 해외 유치 등 양자 인력 저변 확대 필요

- " 양자 활용을 위해서는 **공학, 수학, 과학 등 다학제 전공 인력의 참여가 필수적**, **초기 단계부터 양자 전공 인력과 함께 협력**할 수 있는 지원책 필요"
- "국내 양자인력 양성과 병행하여 양자 선진국 등 해외 Top 우수 연구자 유치와 수학, 과학 등 기초역량이 뛰어난 개발도상국 학생 연구자 유치 필요"

□ R&D 참여 제고 등 기업 육성·산업화 촉진을 위한 지원 확대 필요

- " 양자시장 활성화 이전 초기 단계에서부터 기업의 양자 R&D 참여 활성화를 위한 신규 사업 기획이나 기술이 창업으로 연결될 수 있는 다양한 지원 등 필요"
- " 기존 기업이 양자에 뛰어들 수 있도록 아이디어 제공 방식의 기술 컨설팅 지원과 산 업활용 교육 지원, 기술 보유자-기업-투자자를 연결하는 교류 플랫폼 마련 필요"

♡. 퀀텀 이니셔티브 추진 전략

비전

디지털을 넘어 퀀텀의 시대로 2035년까지 양자경제 선도국 도약

기본방향

R&D를 넘어 산업화로 퀀텀 이니셔티브 본격 추진으로 신속한 성과 도출

전략적 R&D와 인재 양성을 통한 핵심역량 확보

- 실패를 허용하는 혁신도전형 R&D 추진
- > 미개척 분야 선점 기회를 발굴하는 경쟁형 R&D 추진
- ② 코어 기술 격차 해소를 위한 대규모 플래그십 프로젝트 착수
- ➤ 1000큐비트 양자컴, 양자중계기 기반 양자네트워크, 無 GPS 양자항법센서 개발 등
- ❸ 양자전문·기술융합 인력 양성 및 해외 우수 인재 유치
- >> 양자대학원 중심 핵심 인력 양성 및 연구 허브 퀀텀 플랫폼을 통한 전환 인력 유입
- 기초·원천 연구를 넘어 양자 산업화 기반 마련
- ◆ 양자 SW·알고리즘 개발로 양자이득 조기 실현
- >> 양자컴 활용을 통한 난제 해결과 혁신 창출
- **⑤** 양자 소부장 산업 육성으로 글로벌 시장 선점
- > 수요연계 실증 등 통한 핵심 소부장 기술 자립도 제고
- ⊙ 양자 스타트업 성장 지원으로 양자 유니콘 창출
- >> 양자 펀드 조성 및 맞춤형 스타트업 육성 패키지 지원
- ☞ 퀀텀 파운드리 및 테스트베드 등 인프라 구축
- > 양자 소자 제조공정기술과 전문인력 확보
- Ⅲ 글로벌 협력과 기술 안보 확보
- ⊙ 글로벌 양자과학기술 협력 주도
- ➤ 퀀텀개발그룹(QDG) 한국 유치와 주요국 협력 다각화
- ② 글로벌 양자기술 협력 거점 구축
- >> 양자 기술 선도국 내 연구거점 퀀텀 프론티어 랩 구축 추진
- ⑩ 양자기술안보 확보 및 민군협력 R&D
- >> 한국형 양자기술 안보 로드맵 마련 및 양자안보생태계 구축

10대

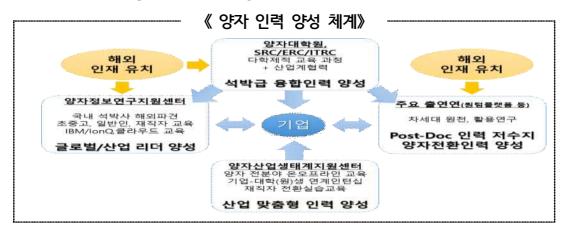
핵심 추진 과제

전략 1 전략적 R&D와 인재 양성을 통한 핵심역량 확보

① 실패를 허용하는 혁신도전형 R&D 추진

- ◇ (AS-IS) 선진국 추격형 연구 중심, 목표 달성 가능성 중심 과제 기획
- → (TO-BE) 도전적, 차세대 퀀텀 경쟁 선도 미래유망기술 선제적 연구
 - (경쟁방식 R&D) 지배적 기술이 없는 양자 분야에서 파괴적 혁신을 통한 패권기술 확보를 위해 실패 허용 혁신도전형 R&D 추진
 - * 美 DARPA는 '33년까지 비용대비 산업활용 가치가 큰 양자컴 시스템 개발을 목표로 QBI(Quantum Benchmarking Initiative) 프로그램을 운영 중
 - 3단계로 나누어 전세계에서 지원한 후보 기술에 대해 200여명의 전문가가 비판적으로 검증하여 단계별로 생존기술 선정
 - 선도국 추격형 R&D에서 탈피하여 미개척 분야 선점 기회를 발굴하는 경쟁방식 R&D 사업 기획 추진

유망 아이템(예시)	주요 개념
반도체 통합형 FTQC (Cyro CMOS-based Large Scale FTQC)	우리나라 강점인 반도체기술*을 바탕으로 짧은 큐비트 유지시간(결맞음 시간) 내 초고속으로 오류 정정 기능을 수행하여 기존 NISQ 수준 양자 컴퓨터를 확장한 차세대 FTQC * Cyro CMOS: 전자시스템을 지속적으로 양자 프로세서에 기깝게 가져가는 기술
반도체 대규모 스핀큐비트 양자컴퓨팅 (CMOS compatible semiconductor based spin-qubits for the mass production of qubits)	반도체 게이트 구조에 갇힌 입자(전자 혹은 전공 등)의 스핀 상태를 큐비트로 사용하는 양자 컴퓨팅 기술로 기존 반도체 표준공정 및 제어회로를 활용하여 확장성, SoC 등 유리
유니버셜 양자시스템 네트워크 (Hybrid Quantum network Leveraging Heterogeneous Quantum Systems)	어떤 양자시스템도 연결할 수 있도록 이종 양자시스템(예 : 원자+ 양자점) 기반 장거리 양자통신을 가능한 양자네트워크 * 다양한 양자 플랫폼 간의 상호 연결이 가능한 양자네트워크 구현 (이종시스 템에서 생성된 광자의 특성차이로 광자의 구별 불가능성 극복)
공간 양자통신 (Everywhere Quantum Communication)	저궤도 위성 간, 군집 위성 간, 무인체와 지상 등 우주, 지상을 연결하여 어디서나 양자암호통신 가능
위상 큐비트 QPU 제작 공정	오류에 강하고 확장성이 큰 위상기반 큐비트 제작 공정기술
(Fabrication process Topological Qubit based QPU)	* 기존 큐비트보다 1,000배 이상 오류에 강한 위상큐비트로 차세대 QPU 확보에 필수적인 공정기술
대규모 SNSPD 광자수계수 (Lage scale SNSPD Photon Counter)	양자얽힘 및 양자센서의 상태 해석을 위해 여러개의 포톤을 개별 포톤으로 분해하고 양자 상태를 측정


② 코어 기술 격차 해소를 위한 대규모 플래그십 프로젝트 착수

- ◇ (AS-IS) 소규모 중기사업만으로, 기초·원천 연구 중심 바텀업식 과제 연구 수행
 → (TO-BE) 대규모, 목표 지향적 플래그십 프로젝트 최초 추진
 - (플래그십) 양자기술 최초의 대형 R&D 사업인 플래그십 프로젝트를 성공적으로 착수, 양자 기술 대도약 및 양자 산업 진흥 기반 마련
 - 1,000큐비트 양자컴, 양자중계기 기반 양자네트워크, 無GPS 양자 항법 센서 등을 민간기업과 함께 개발*하여 산업 활용까지 연계
 - * 사업공고시 단순 사업설명회를 넘어 개방형 산·학·연 워크샵을 통해 동사업에 대한 기업의 산업활용 기회를 밀착 전달하고, 과제선정시 민간기업 참여 의무화
 - ◇【컴퓨터】 초전도·중성원자 방식의 풀스택 양자컴 시스템을 개발, 슈퍼컴과 함께 하이브리드 컴퓨팅 시스템을 구축하여 클라우드 서비스 제공·활용
 - * 다양한 양자컴 플랫폼 중 세계적 기술 성숙도와 국내 기술 수준이 가장 앞서 있는 초전도·중성원자 플랫폼으로 신속하게 국산 양자컴을 확보, 수출통제에 대비한 기술주권 선제 획득
 - ◇【통신】우수한 양자 암호통신기술(세계 3번째 상용화)을 바탕으로 양자기기간 양자 정보전송이 가능한 양자 중계기를 개발하여 양자인터넷 시대 선도
 - * 3노드, 100km 양자메모리기반 중계기 개발을 최종 목표로, 양자얽힘 전송 기술 등 중간 단계 성과물은 상용화된 양자암호통신 속도향상·집적화 등에 연계하여 산업확산 촉진
 - ◇【센서】세계 최고수준의 5대 양자센서 기술^(광·관성·전·자기장·시간)을 확보 하고, 국방, 바이오, 반도체 등 첨단산업과 연계하여 상용화 촉발
 - * 기존 센서의 한계를 넘어 10배~100배 정밀한 양자항법(관성·시간), 의료용 양자MRI(자기장), 반도체 신속진단(전기장), 양자현미경(광) 시작품 개발 및 상용화 추진

③ 양자전문·기술융합 인력 양성 및 해외 우수인재 유치

- ◇ (AS-IS) 물리학, 전기·전자 공학 계열 인재 분리로 이론·실용 기술 융합 및 혁신에 제약
 → (TO-BE) 주요 거점 중심으로 물리학 기반의 양자 핵심인력 뿐만 아니라 반도체, 전기·전자, 컴퓨터 공학 등 신규인력 유입 및 전환인력 양성, 두터운 양자 생태계 기반 조성
 - (핵심 인력) 양자 대학원^{*} 중심 산·학·연 협업 및 해외 연수 확대 등 통해 글로벌 리더로 성장 할 수 있는 융합형 인재 양성
 - * 고려대, KAIST, 포스텍을 통해 '32년까지 박사급 전문인력 540명 배출

- SRC·ERC·IRC·ITRC 등 주요 연구 거점을 통해 대학-출연연 공동 프로젝트 및 글로벌 공동연구를 통해 실전 연구역량 배양
- IBS '차세대 연구리더(YSF:Young Scientist Fellow)' 프로그램을 통해 양자분야 우수 신진 연구자의 도전적 · 독립적 연구 지원
- (전환 인력) 물리학 뿐만 아니라 반도체·전기·전자 공학, 화학·바이오 등 양자 엔지니어 양성 및 활용 확산을 위한 인접분야 신규 인력 유입 확대
 - ① 양자대학원 내 양자 부전공 신설을 통한 다학제 학생 유입 확대,
 - ② 출연연 연구거점(퀀텀플랫폼) 산·학·연 공동연구 통한 비양자 인력 유입
 - ③ 제조·화학·바이오 등 인접 분야 인력 대상으로 글로벌 기업 협업 교육 확대
 - ④ 기업-대학(원)생 연계 인턴십 및 재직자 전환실습교육 등 신업 맞춤형 교육
 - ⑤ 화학, 소재, 물류 등 전통산업 현장 프로그램 마련, 양자 활용 등 교육지원
- (해외 인력) 글로벌 우수인재 유치를 통한 연구역량 제고를 위해 **양자** 분야 해외인재유치 특화사업 신설 및 정주지원 등 제도 개선 추진
 - 개인 초청에서 나아가 기관 단위 전략적 수요를 반영, 해외 석학의 인건비 뿐 아니라 연구팀, 연구장비 도입까지 지원하는 맞춤형 패키지 지원
- (기반 조성) 양자 인력을 배출·수용 할 수 있는 거점 구축, 생태계 기반 조성
 - (퀀텀 플랫폼) 산업수요가 아직 많지 않은 상황에서 퀀텀 인력의 저수지 역할을 할 퀀텀 플랫폼(연구허브)을 구축, 산학연 공동연구와 전환 인력 유입 촉진
 - * 퀀텀 플랫폼 구축 사업('25년 신규, 68억원), 출연연 2곳 연구거점 지정 예정
 - (퀀텀팹) 연구자들이 연구역량을 배양하고 소자 설계·공정 노하우를 축적 할 수 있도록 개방형 퀀텀 전용팹 확대 구축, 양자 전문 인력 양성
 - * KAIST, UNIST 등 기구축 개방형 팹 장비 추가 구축 및 수도권 확대

전략 2 기초·원천 연구를 넘어 양자 산업화 기반 마련

④ 양자 SW·알고리즘 개발로 양자이득 조기실현

- ◇ (AS-IS) 알고리즘·SW은 그 파급효과에도 불구 H/W 대비 상대적 투자* 미흡, 민간 차원의 개발 여건·인프라 역시 부족
- → (TO-BE) 양자컴 제작 뿐만 아니라 상용화 시대에 대비한 활용 역량 확보를 위해 알고리즘·SW 지원 강화로 USE-CASE 조기 창출
 - (양자이득도전) 양자컴퓨터 활용한 난제 해결과 혁신 창출을 위해 양자 알고리즘·SW의 개발·적용을 통해 양자 이득 가능성 도전 과제 확대
 - ※ 양자컴퓨팅기반 양자이득도전 연구사업 : '23 ~ '28 / 총사업비 493억원 ('24년 65억원 → '25년 96억원, 신규과제 12개 추가)
 - '24년 6개 과제에서 '28년까지 누적 25개 과제로 확대하고, 양자산업의 활성화를 위해 **의무적으로 산업체가 참여하는 양자이득 실현 도전 후속사업 추진**
 - * 기존 사업 확대 및 산업 도메인별 상용화 중심 기술개발 추가 지원 등
 - (알고리즘SW 챌린지) 양자컴퓨터 활용에 대한 사회 전반의 관심을 높이고 혁신적 아이디어 도출을 위한 경진대회 방식의 '퀀텀 알고리즘 챌린지' 신설 추진
 - * (대회주제 안)① 양자 컴퓨터 환경에서 특정문제 해결할 수 있는 알고리즘(예: 최적화 문제, 기계학습, 양자화학·물리학 시뮬레이션 등) ② (장기) 양자컴퓨터에서 동작하는 SW·APP 개발
 - (컴퓨팅 인프라) 글로벌 선도 양자컴퓨팅 시스템을 도입하여 직접 운영 및 클라우드 서비스를 통해 양자컴 활용역량 내재화 및 SW 기반 구축
 - ※ 양자컴퓨팅 서비스 및 활용체계 구축사업('25년 신규 58억원)
 - 해외 선도 기업(IBM, IonQ 등) 양자컴을 도입, 국내 **슈퍼컴 등 연결**하여 성능을 가속화하는 플랫폼 개발, 향후 국내 개발 양자컴(플래그십 등) 연계
 - * 민간 클라우드 기업(CSP)와 협력, 클라우드 서비스를 상용화하고 양자 AI 알고리즘 등 실증환경 신속 제공

5 양자 소부장 산업 육성으로 글로벌 시장 선점

- ◇ (AS-IS) 양자과학기술 구현에 필요한 대부분의 소부장 해외에 의존
- → (TO-BE) 기술개발부터 산업화까지 소부장의 공급망 안정화 추진
 - (소부장 R&D) 광소재, 웨이퍼, 계측·통신장비 등의 기업에서 양자 분야에 필요한 소재(케이블 등), 소자, 모듈 사업화를 위한 연구개발 확대
 - * 퀀텀ICT엔지니어링기술개발 사업: '25 ~ '29 / 총사업비 493억원 ('26확대)

- ◇ (사례) '우리로'는 광도파로, 다이오드 등 광소자 생산기업으로 단일광자수신칩 연구개발(과기부 지원, '20-'23) 및 사업화에 성공 후 양자분야로 사업영역 확장
- 특히 대외 의존도가 높거나 수출통제 등 글로벌 규제 강화 예상되는 등 핵심 품목 도출, 해당 품목 기술 자립도 제고
- ※ **양자통신 핵심소부장**(리튬나이오베이트 소재 및 기판 등), **큐비트 생성 핵심 소부장** (대구경 다이아몬드 기판 등), 양자기술 지원 전자부품 등
- (수요연계 실증) 공공·국방·첨단 산업 등 분야 대상으로 양자통신 및 양자 센서 기술 적용 수요 발굴, 활용사례 창출(예: 양자라이다 기술 자동차 적용)
 - ※ 양자산업 수요연계형 실증사업('25년 신규 50억원)
- ◇(국내사례) SKT, 양자 센싱 기술이 적용된 단일 | ◇(해외사례) AOSense-Boeing, 양자센서로 CPS없는 광자 기반 양자 라이다(LiDAR)를 개발, 부산 감천항에서 침입 감지 관제 시스템 성공적 운영 📄 항공기의 회전과 가속을 정말하게 측정
 - 항법 시험 비행 성공 양자관성측정 장치를 통한

⑤ 양자 스타트업 성장 지원으로 양자 유니콘 창출

- ◇ (AS-IS) 높은 기술적 난이도로 창업 및 기술사업화 어려움, 기존 기업 전환에 한계
- → (TO-BE) 양자 분야 특성을 고려한 공공펀드 조성 및 유형별 맞춤형 스타트업 육성 추진
 - (펀드조성) 양자 스타트업의 생존·성장을 위한 전용 펀드 조성 추진*
 - * (현황) 고난도·낮은 기술성숙도 등으로 타 국가전략기술 대비 투자 부족, 특히 대부분 자금이 중·후기 집중(프리A 5%, 시리즈 A 14%), 초기 성장 마중물 부족
 - → 과학기술혁신펀드('24.9~'28.12 / 총1조원 규모) 활용 등 추진
 - (**스타트업 육성**) 기술 난이도는 높고 시장성숙도가 낮은 양자 분야 특성을 고려, 양자분야 맞춤형 스타트업 육성 전략 마련 및 패키지 지원 추진
 - (유형1: 기술창업 지원) 기술력은 있으나 창업 노하우가 부족한 대학·출연연 양자 연구자들의 창업을 지원할 수 있도록 창업준비, 투자유치 등 全 단계 지원
 - * 양자산업생태계지원센터를 중심으로 주요 제조 인프라(테스트베드, 개방형팹) 등 연계, BM컨설팅, 테스트베드 시험·검증, 판로개척·투자유치, 글로벌 진출 지원 등 맞춤형 지원
 - ◇ (사례) 표준연에서 개발한 심자도 센서기술을 이전받은 ㈜AMCG는 미국 FDA 승인('24.4.), 코넥스 상장('24.12.) 등 성공적 사업화 진행 중
 - (유형2: 기업 R&D 연계 지원 퀀텀플랫폼의 산 학연 연구, 소부장 R&D 등 우수 연구를 양자이득 도전연구 글로벌 R&D시엄 으로 확장 연계 신업화 및 해외시장 개척 지원
 - * EUREKA, QuantERA 등 글로벌 R&D 사업과 기업참여형 과제 기획 연계

② 퀀텀 파운드리 및 테스트베드 등 인프라 구축

- ◇ (AS-IS) 초전도 양자팹, 개방형팹, 통신·센서 테스트 베드 1차 구축 완료
- → (TO-BE) 양자소자제작 공정기술과 전문인력 확보 및 점진적 파운드리 서비스 확대
 - (퀀텀 파운드리 육성) 초전도 QPU 등 핵심소자 제작의 기반이 될 퀀텀파운드리 확대 구축으로 국내 뿐만 아니라 글로벌 제작 수요 대응
 - (초전도) 기 구축된 성균관대 초전도 양자팹과 한국나노기술원 인프라를 연계, R&D팹을 고도화하고 시양산급 파일럿 팹 추가 구축을 통해 파운드리 완성
 - * 기존 2~6인치급 양자 소자에 더해 1,000큐비트 급 양자소자 제작을 위한 준양산급 대면적(8인치급) 고성능 양자소자 제조 목적 팹
 - → (역할) ▲ 중장기 국가전략 양자플래그십 거점 인프라 ▲ 나노반도체팹·양자R&D 팹 연계 허브 ▲ 글로벌 양자 하드웨어 산업 공급망 진입 거점
 - (양자 테스트베드) 컴퓨팅·통신·센서 각 분야별 특성 고려 맞춤형 양자 테스트 베드 구축 및 클러스터 연계* 양자 산업화 촉진
 - * 분야별 양자테스트베드와 지역거점을 연계, 양자 산학연 역량결집 및 기존 첨단 산업에의 양자융합·확산을 위한 중심지(양자클러스터) 조성
 - (통신·센서) 연구현장 수요를 기반으로 양자통신·센서 시험망 인프라 확대, 주요 해외 테스트베드와 기술교류를 통해 양자기술 산업전환 기속화
 - * 서울(KIST), 판교(NIA/TTA), 대전(ETRI/KRISS)을 연결하는 250Km 시험망 구축 중
 - (컴퓨팅) 플래그십 사업 개발목표와 연계, 컴퓨팅 소부장을 테스트·검증 하고 기존 반도체·전자부품 기업 전환을 유도할 수 있는 테스트베드 구축
 - (표준화) 우리나라가 선도하고 있는 ITU-T*, JTC3** 등 국제표준 기구에서 표준을 선점하기 위한 지원을 확대·강화
 - * 전기통신 관련 국제표준기구로 양자암호통신 최다표준 채택 등 한국 주도적 참여
 - ** IEC/ISO가 양자분야에 '24년 5월 새로 창립한 국제표준기구로 한국이 의장국
 - 국제표준 제안을 위한 표준 개발, 산업 선점에 필요한 사실표준 (OuINSA)* 허브 구축. 표준 인력 등 생태계 마련 등 추진
 - * 국내외 민간 기관(180개)이 양자 산업에 사용가능한 사실표준을 개발하고 채택하는 '국제 사실표준화 기구'로서 '24년 한국 주도로 창립 ('24.8)

전략 3 글로벌 협력과 기술 안보 확보

图 글로벌 양자과학기술 협력 주도

- ◇ (AS-IS) 후발주자로서 적극적인 R&D 투자 확대에 비해 상대적으로 국제사회 입지 열악 → (TO-BE) 다자협의체 적극 참여 및 주요국과 긴밀한 파트너십 통해 글로벌 위상 제고
 - (**협력그룹주도**) 기술안보 확보를 위해 미국 등 주요 선도국이 참여하는 퀀텀개발그룹(QDG) 회의 한국 유치 추진으로 국제협력 주도 국가 부상
 - * 미 국무부 주관 9개국 고위급 협의체('24년 출범, '25년 3월 호주에서 3차 회의 개최 /9+4개국 추가 참여 예정)
 - (대상 다각화) 미국 뿐만 아니라 캐·영·덴 등 주요국과 인력교류, 인프라 공동활용, 산업계 협력 강화, 국제공동연구 등 전략적 파트너십 다변화
 - (유럽) EU Horizon Europe 내 양자분야 다자연구 프로그램 적극 참여¹⁾, 협력시 시너지효과 높은 전략적 협력국가와는 별도 兩者협력체계 구축²⁾
 - 1) 유럽과의 양자분야 다자협력 프로그램인 QuantERA 참여 협약체결 추진('25.5.), 세계최대 다자간 연구혁신 프로그램인 호라이즌 유럽에 한-EU 양자과제 필수 포함('25년~)
 - 2) 한-영 혼성위 합의('24.11.)로 인력교류, 산업계 협력 강화 등 합의, 한-덴마크 MOU 추진 ('25.4분기) 스위스 국립과학재단과 한-스위스 공동연구 매칭 지원(연 25억원 규모, '25.10월~)
 - (미주) 해외석학 연계 R&D 기획 등 공동연구 강화(미국), NSERC, NRC 등 주요 기관 협력을 통한 인력교류·공동연구 협력 강화(캐나다) 등
 - (퀀텀 코리아) 세계 최고 수준 연구·산업 전시회인 「퀀텀 코리아 2025」를 성공적으로 개최하고, 퀀텀 대화 등 연계하여 K-Quantum Network 구축
 - 퀀텀 대화*, 세계 양자과학기술의 해 기념 OECD 공동 워크숍, 한-스위스 양자 포럼 등 개최 추진
 - * 해외 주요국 정부 관계자 및 전문가 초청 양자 과학기술 네트워킹 행사

----- 《 2025년 주요 국제협력 캘린더》 ----

1/4 분기	2/4분기	3/4분기	4/4분기
퀀텀 커넥트 개최3월QDG, MDQ 회의	 세계 양자의 해 기념, OECD 공동 워크숍 (퀀텀코리아 연계, 6월) 양자과학기술국제협력 거점센터 비전 발표 	 MDQ 회의 QUA사업단 출범(7월) 국제공동연구실 선정계 	• 한-덴마크 MoU 및 대표단 파견(잠정) • 퀀텀 대화 개화(12월)

⑨ 글로벌 양자기술 협력 거점 구축

- ◇ (AS-IS) 국제공동연구실(10개) 중심 산발적 공동연구 지원 중
- → (TO-BE) 퀀텀 프론티어랩, 글로벌 파트너십 선도대학 등 도전적 국제공동연구 모델 도입
 - (퀀텀 프론티어 랩) 퀀텀 분야 세계적 명성을 보유한 유수기관과 협업, 국내외 연구진이 상주하는 연구거점 '(가칭)퀀텀 프론티어 랩' 구축 추진
 - * Duke대, NIST 등 양자 분야 연구 선도기관과 협업 기회 모색·공동 연구소 설립
 - → 양자 오류정정(Quantum Error Correction), 양자 인터넷(Quantum Internet), 양자 인공지능(Quantum AI) 등 도전적 연구과제 공동 기획·연구 수행
 - (글로벌선도대학;QUA) 선도대학간 양자 전문가들이 교류·협력하는 국제 협력 플랫폼 구축, 연구 및 인력교류 활성화, 인프라 구축 등 추진
 - * QUA: Quantum University Alliance, 양자과학기술 글로벌파트너십 선도대학('25년 2개 신규, 5년간 年 50억 지원)

10 양자기술안보 확보 및 민군협력 R&D

- ◇ (AS-IS) 국가 R&D와 국방 R&D에서 양자과학기술 R&D를 개별적으로 수행하여 연계성 부족
- → (TO-BE) 민간국방 합동 양자 R&D 수행 및 제도적 기반 구축으로 국방분야 양자기술 적용 확대
 - (기술 인보) 글로벌 공급망기술통제 협력 체계 내에서 동맹국간 긴밀한 공조를 유지할 수 있도록 글로벌 기술 트렌드 고려한 한국형 양자기술 안보 로드맵 미련
 - (보안) 양자시대 보안 강화를 위해 양자컴퓨팅 환경에서도 안전한 양자내성암호 체계로 전환, 양자네트워크 등 관련 기술 확보, 제도·절차 마련, 산업 기반조성 등 추진
 - (민군협력 R&D) 국방부·방사청과 협업을 통해 무기체계 적용가능한 양자기술을 개발하여, 국방 R&D와 연계를 통한 미래전장 대비태세 구축
 - * 잠수함 탐지 자기장센서, 유무인복합체계용 양자암호통신기술 등 무기체계 적용 직전 단계(TRL 4~6)의 양자기술 개발 신규 추진('26)

- (실증, 제도) 양자암호통신의 국방 도입을 위해 선제적으로 제도를 마련^{*}하고, 양자암호드론 등 양자 기술의 군 실증 추진하여 양자안보 생태계 구축
 - * 現 보안적합성검증 제도에 양자암호통신장비 도입 내용 반영 등

Ⅵ. 10대 핵심 추진과제별 추진 계획 및 일정

10대 핵심 추진과제	주요 추진계획	일정
① 실패를 허용하는 혁신	▶차세대 퀀텀 경쟁을 선도할 미래유망기술을 선제적	'25~
도전형 R&D 추진	연구하는 실패허용 혁신도전형 R&D 기획	20.4
<u> </u>	▶신규 R&D 사업 착수	'26~
② 쾌 기술 격차 해소 대규모	▶사업적정성 검토	~'25.4
플래그십 프로젝트 착수	▶RFP 작성, 공고, 기관 선정을 거쳐 사업 착수	'25.5~
	▶재직자 교육, 양자대학원 다학제 프로그램 마련	'25.下
③양자전문·기술융합 인력	등 주요 교육·연수프로그램 확대·개편 추진	۷۵. ۲
양성 및 해외 우수인재 유치	▶퀀텀 플랫폼 2개 거점(출연연) 지정	~'25.4
	▶개방형퀀텀 전용팹 추가 구축계획 마련	'25.下
	▶주요 사업* 공고 및 과제 선정	~'25.4
④양자 SW·알고리즘 개발로	*양자이득 도전, 양자컴퓨팅서비스 및 활용체계 구축	
양자이득 조기실현	▶주요 사업 착수	'25.5~
	▶퀀텀 알고리즘 챌린지 등 신규사업 기획·추진	<u>'26~</u>
5양자 소부장 산업 육성	▶공공·국방·첨단 산업 등 대상 수요연계실증	'25~
으로 글로벌 시장 선점	▶광소재, 웨이퍼 등 소부장 R&D 확대	'25~
6양자 스타트업 성장 지원	▶양자 전용편드 조성 추진	'25~
으로 양자 유니콘 창출	▶양자분야 맞춤형 스타트업 육성 추진	'25~
기퀀텀 파운드리 및 테스	▶통신·센서 테스트베드 시험망 인프라 확대	'25~
트베드 등 인프라 구축	▶초전도 파일럿 팹 신규사업 기획·추진	'26~
	▶컴퓨팅 소부장 테스트베드 신규사업 기획·추진	'26~
⑧글로벌 양자과학기술	▶QDG, MDQ 참석	'25.3
협력 주도	▶퀀텀 코리아 개최	'25.6
	▶ 글로벌파트너십 선도대학 사업 공고 및 과제선정	~'25.4
⑨글로벌 양자기술 협력	▶글로벌파트너십 선도대학 사업 착수	'25.7~
거점 구축	▶퀀텀 프론티어랩 신규사업 기획·추진	'26~
	▶잠수함 탐지 자기장센서 등 무기체계적용	'26~
⑩양자기술안보 확보 및	R&d 신규사업 추진	20
민군협력 R&D	▶양자암호통신 국방 도입 제도개선 및 군실증	'26~
	▶범국가 양자내성암호 전환 핵심기술개발	'26~
	R&D 신규사업 기획·추진	

과학기술정보통신부 기초원천연구정책관 양자혁신기술개발과 담당자 유주연 사무관 연락처 전 화: 044-202-6872 E-mail: juyeonyoo@korea.kr