과제명 작성 가이드라인 및 기술준비도

[과제명 작성 가이드라인]

1 기본방향

- R&D 과제명은 5개 R&D 속성을 짧고 이해하기 쉽게 과학적· 기술적으로 표현되어야 하며, 정보공개에도 적합해야 함
- 과제명은 주제어 중심으로 60자, 20단어 이내로 작성
- R&D 결과물과 기술적·직접적 연관성이 적은 용어는 사용 배제
 - * '그린', '고부가가치', '유망' 등의 수식어는 될 수 있는 한 사용 배제

속성	표현방법	작성방법	작성사례			
R&D 목적	<u>「∼을 위한」</u> 의 형태	R&D를 통해 해결하고자 하는 과학적·기술적·사회적 목적 이나 파급효과 등을 표현	· 6Gbps 무선멀티미디어 통신 서비스 제공을 위한 · Euro-6 배기가스 규제 대응을 위한 · IT조명 통신융합을 위한			
적용 대상	「 ~용」 의 형태 ※ 단, 적용되는 시장이 특정 국가 및 산업시장을 지칭 하는 어휘는 사용금지	R&D 결과의 1차 적용 대상이나 R&D 결과물이 적용될 시장· 산업분야 등을 구체적으로 표현	 유무선 통합 중계기용 □ 디젤자동차용 □ LED용 □ 트랜시버 원천기술 □ 엔진시스템기술 □ 가시광 RGB 선별 무선통신 기술 			
R&D 목표	주로 <u>「~기술」</u> 의 형태	R&D를 통해 구현될 기술 을 표현				
R&D 목표수준	주로 <u>「~급」</u> 의 형태	R&D기술의 수준, 핵심성능 및 사양 등을 정량적으로 표현	· 60GHz급 밀리미터파 기반 · 최고효율 10%이상 향상된 2L급 · 380 ~ 780 나노미터			
R&D 단계	'기초/응용/개발' 등 R&D단 표현이 불가능한 경우 전체	· 기초단계 · 응용단계 · 개발단계				

○ 과제명 작성 예시

* 기존 과제명이 핵심 기술개발 목표 및 내용 파악 등이 어려운 경우, R&D 속성 5가지를 고려(과제명 작성요령 적용)하여 과제명을 수정

기존 과제명		과제명 작성요령에 의한 과제명 수정 (안)
환경부하 및 에너지 저감을 위한 Eco-Mg 생산기술 개발	>	환경부하와 에너지 저감을 위해 산화:발화 위험성 제거 및 성형성이 10%이상 향상된 수송기기용 Eco-Mg 생산기술 개발
라우터 가상화 및 프로그래머블 원천기술 개발(SW분야)	>	미래 인터넷 연구를 위한 선도연구자용 10Gbps급 라우터 가상화 및 프로그래머블 기초 원천기술 개발

② 가이드라인

구분	항목
7 E	· 한글 맞춤법에 맞아야 함(외래어 표기법 포함)
공통	·일반적으로 사용되지 않는 약어는 되도록 사용을 삼가
	·과제명은 과제 핵심내용을 명확하고, 쉽고, 간결하며, 과학적·기술적으로 표현 가능한 쉬운 용어를 사용해야 하며, 정보공개에도 적합해야 함
	· 과제명은 5개 R&D 속성이 포함되는 것을 원칙으로 작성하되, R&D 목표·기술수준, 적용 대상은 과제명에 반드시 포함되어야 함 * (5개 R&D 속성) R&D 목적, R&D 적용대상, R&D목표, R&D목표(기술)수준, R&D단계 ▶ 특별한 이유가 있지 않는 한, 5개 R&D 속성 중 R&D목표(기술)수준은 명확한 수치로 제시
과제명	· 과제명 및 부과제명 작성시, 의도적 모호성은 배제되어야 함 * (의도적 모호성) [®] 연구비를 쉽게 확보하기 위해 연구범위를 포괄적으로 제시하는 경우, [®] 과제명에 기술 수준이나 목표가 분명하게 드러날 경우 연구자간 비교가 쉬워지게 되어 명확한 기준과 목표 제시를 하지 않는 경우 등
	· R&D 결과물과 기술적·직접적으로 연관성이 적은 용어와 화려한 미사여구 등은 사용을 삼가되, 구체적인 규격이나, 범위 등을 함께 활용·작성하는 경우에는 사용이 가능함 * 고부가가치, 차세대, 첨단, 녹색, 그린 등 * 초고속 열차(X) → 400Km/hr 초고속 열차(O), 저전력(X) → 시간당 10W 전력을 소비하는(O) 등
	·주제어 중심으로 60자, 20단어 이내로 작성
부과제명	· 부과제명은 일부 과제에 대해서만 필요시, 선택적으로 작성·사용 * 과제명만으로 내용전달이 어려운 경우(개발하고자 하는 기술이 다양한 경우 등), 계속 과제가 기술·시장 환경변화 등으로 인해 과제 개발목표의 변경·수정이 필요할 경우에만 사용
	·주제어 중심으로 100자, 30단어 이내로 작성
	· 요약문은 과제내용을 보다 명확하게 전달하기 위해 반드시 작성
요약문	· 기본정보와 요약정보로 구분하여 서술 * (기본정보) 대상사업, 연구개발비, 협동연구 여부, 키워드 등을 기록 * (요약정보) R&D 목적 및 목표, R&D 주요내용, R&D 목표수준 및 차별성 등
과제명	· 신규과제 선정평가시 과제명 가이드라인에 따라 작성되지 않는 과제명은 협약 전 연구 책임자로 하여금 과제명을 수정하게 하거나, 연구개발과제평가단이 과제명을 수정
수정	·계속과제가 기술·시장 환경변화 등으로 인해 과제명 수정이 필요할 경우, 부과제명에 수정된 과제명을 기재 * 과제의 목표변경은 전문기관 승인을 통해 수정 가능
품목 요약서 내용	· (개념) 품목의 내용을 신청자가 충분히 이해할 수 있도록 일반적인 용어로 설명 - 세부적인 개발 방법 및 세부 적용 기술 등은 품목명이나 개념설명에서 언급하지 않고, 기술동향 등을 통하여 간접적으로 설명 - (제품형태) 일반적인 용어로 제품의 기능과 용도 및 특성이 드러나도록 작성 * (예) 광대역 파장을 동시에 감지할 수 있는 고감출도 광센서, AI기반 엔지니어링 빅데이터 통합분석 지원 시스템, 초소형 LED를 이용한 자동차용 능동 구동형 자유곡면 디스플레이 - (기술형태) 기술 개발에 핵심이 되는 기술을 일반적인 용어로 표현 * (예) 영상판독 인공지능 기술을 활용한 선박해양플랜트 용접품질 자동검사 기술, 콜라겐 재생섬유 제조기술

③ 지양해야 할 표현과 올바른 표현방법 예시

지양해야 할 표현 → 올바른 표현방법								
① 미사여구는 생략하거나 구체적인 표현으로 대체								
• 차세대 →			5세대 / 6세대, 7,000cc급, 전기자동차 등					
• 초경량 → C			0.001g의 초경량					
• 고강도 → ²			!장강도 60,000kpa 등					
	• 고부가가치	\rightarrow	2만 GT급 컨테이너선, 5천명이 탑승 가능한 크루즈선					
	• 저진동·저소음	\rightarrow	1.5mm 진동, 45dB 소음					
	• 친환경	\rightarrow	r ⁶⁺ 이 없는, Cd이 없는(OO유해물질이 제거된/포함되지 않은 등)					
	• 저탄소	\rightarrow	O ₂ 발생이 20% 감소					
	• 신공정	\rightarrow	기존공정 대비 20%이상 생산성이 증가된					
	• 녹색산업	\rightarrow	신재생에너지(풍력 등) 산업					
	• 정밀화학소재	\rightarrow	(플라스틱) 폴리아세탈수지소재, 폴리실리콘 등 (완제품) 도료(방화도료, 선저도료 등) 계면활성제(음이온, 양이온, 중성 등) 등					
	• 녹색성장	\rightarrow	사용 삼가					
	• 미래형	\rightarrow	생략					
 감성형 → 			생략					
• 첨단 →			생략					
	• 녹 색(그린)	\rightarrow	생략					
② 정량적 표현으로 대체								
	• 고효율	\rightarrow	(자동차분야) 30km/l (에너지분야) 300cal/g (에너지관리분야) 에너지 1등급, 에너지 효율 30%이상 향상 등					
• 고성능 →		\rightarrow	150W at 1,800RPM / 220V					
	• 나노급	\rightarrow	1.5 나노급, 20 나노					
	• 대용량	\rightarrow	200G 용량					
• 저전압·장수명 →		\rightarrow	20V, 10,000시간					
• 초미세 →		\rightarrow	30 나노미터					
	• 초정밀	\rightarrow	10 ⁻⁵ mm 오차 발생					
	• 고출력	\rightarrow	최대출력 1,000마력 엔진					
	• 초대형	\rightarrow	15,000TEU, 10,000명이 탑승 가능한 크루즈선					
	• 중온, 고온	\rightarrow	100℃, 500℃ 등					
	• 저가격	\rightarrow	1,000원					
	• 초고속	\rightarrow	60G bps					
	• 초저전력	\rightarrow	0.1W at 220V, 1hr					

[기술준비도(TRL, Technology Readiness Level)]

- □ (정의) 핵심요소기술의 기술적 성숙도에 대한 일관성 있는 객관적 지표
 - 기술의 성숙도(Life-Cycle)를 9단계로 구분(기초실험~사업화)하여 기술 개발목표의 달성수준 및 기술준비도를 측정하는 기준
 - 산업핵심기술개발사업은 TRL 2단계~8단계까지 중점지원
 - * (원천기술형) ~5단계, (혁신제품형) ~6·7·8단계
 - 기술개발내용의 핵심요소기술(Critical Technology Elements)을 제시하고 TRL 최종단계의 생산수준 또는 결과물 명시

	단계	TRL정의	개발 연차	산업분야								
구분				기계	소재	전기 전자	정보 통신	응용 S/W	섬유 화학	고분자 세라믹	바이오	
기초연구	1	기초실험	-	과학적 연구단계 (기초논문, 기초연구 수준)								
단계	2	개념정립	1차	기	본원리가 :	응용기술가	발로 전이	되는 단계	(응용논문	. , 특허 수	준)	
실험단계	3	기본 성능검증	2차	모델링/ 설계	소재합성 /배양	모델링/ 설계	모델링/ 설계	수요자 분석	소재합성 /배양	소재합성 /배양	소재 실험	
, 교육단계	4	부품/시스템 성능평가	3차	핵심 요소기술	최적의 배합비	핵심 요소기술	핵심 요소기술	알고리즘 정의	최적의 배합	최적의 배합비	기능소재 선별	
시작품	5	부품/시스템 시작품 제작	4차	제작기술 확보	공정 최적화	제작기술 확보	제작기술 확보	전체스킴 설계	공정 최적화	공정 최적화	분리수 <u>율</u> 향상	
단계	6	시작품 성능평가	5차	시제품 성능	시제품 성능	시제품 성능	시제품 성능	알고리즘 적용	시제품 성능	시제품 성능	전임상 안정성	
제품화	7	시제품 신뢰성 평가	6 ~ 7차	신뢰성 평가	신뢰성 평가	신뢰성 평가	신뢰성 평가	디버깅	신뢰성 평가	신뢰성 평가	임상 (1, 3상)	
단계	8	시제품 인증	-	KS/ISO 인증	KS/ISO 인증	KS/ISO 인증	KS/ISO 인증	S/W 등록	안정성 인허가	KS/ISO 인증	식약처 허가	
사업화 <u>단계</u>	9	사업화	-	-	-	-	-	-	-	-	-	

※ TRL은 미국 NASA에서 우주산업의 기술투자 위험도 관리의 목적으로 '89년 Sadin 등이 처음 도입하였으며 미국의 NASA와 DoD등에서 광범위하게 사용 중